
Introduction to Octave

Dr. P.J.G. Long
Department of Engineering
University of Cambridge

(Based on the Tutorial Guide to Matlab written by Dr. Paul Smith)

DRAFT VERSION 0.0.1
PLEASE email any errors to mdp-support@eng.cam.ac.uk

January 2005

1



This document has been produced as a tutorial to accompany the version of Octave
supplied on the Cambridge-MIT Institute (CMI) 1 funded Multidisciplinary Design Project
(MDP) Resource CD 2. The close compatibility of the open-source Octave 3 package with
MATLAB4, which is heavily used in industry and academia, gives the user the opportunity
to learn the syntax and power of both packages where funding and licence restrictions
prevent the use of commercial packages.

The text of this tutorial has been adapted from the student notes developed by Dr. Paul
Smith from the Cambridge University Engineering Department for a 2nd year Introduction
to Matlab course which is a follow-on from a 1st year Introduction to C++. The course is
run as a series of four laboratory practicals with the exercises given in this tutorial forming
the basis for submitted work.

Conversion from Paul Smith’s original to this current document has be relative easy
with in many cases needing only to exchange

• Octave for Matlab in the text
• the prompt and precise format of the answers given in the example scripts
• removal of specific course adminstration.

However in a number of cases there are signficant differences, e.g. graphical performance
(Gnuplot is assumed to be the output plugin for Octave), where changes have had to be
made.

To maintain the ideal of learning both Octave and Matlab from this tutorial, the differ-
ences between Ocatve and Matlab have been highlighted and details of any modifications
etc. required to run a function/program with Matlab described in footnotes. In a num-
ber of cases additional functions have had to be written or startup options set, these are
included as default on the MDP distribution and documented in aan appendix.

ACKNOWLEDGEMENTS

The any success of this tutorial is a major result of the background wok carried out by Tim
Froggatt in setting up the MDP resource distribution and requests from Gareth Wilson,
the author of the RED Tools web interface for Octave scripts, for additional information
and scripts.

Significant reference has been made to the resources generated and maintained by John
Eaton and his team at www.octave.org. As indicated above the tutorial is heavily based
on Paul Smith’s original and his acknowledgements are duplicated here

..... My thanks go to Roberto Cipolla and Richard Prager for sharing their
advice and experience, to Hugh Hunt for MATLAB tips, and to Maurice Ringer
for drawing the cricket stumps. And to all of those who tested early versions
of this for me.
The cricket example is based on David Mansergh’s 2000–2001 4th year project.
The video texture sequences are borrowed from Martin Szummer at MIT’s AI
lab. Inspiration was also drawn from various other Octave tutorials and text
books.

1CMI - www.cambridge-mit.org
2MDP - http://www-mdp.eng.cam.ac.uk
3www.octave.org
4MATLAB r©The Mathworks, www.mathworks.com

2



Contents

1 Introduction 5

1.1 What is Octave? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 What Octave is not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Who uses Octave? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Why not use a ‘normal’ highlevel language, e.g. C++ . . . . . . . . . . . . 5

2 Simple calculations 6

2.1 Starting Octave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Octave as a calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The Octave environment 7

3.1 Named variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Numbers and formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Number representation and accuracy . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Loading and saving data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Repeating previous commands . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 Cancelling a command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.8 Semicolons and hiding answers . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Arrays and vectors 14

4.1 Building vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 The colon notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Vector creation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Extracting elements from a vector . . . . . . . . . . . . . . . . . . . . . . . 16

4.5 Vector maths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Plotting graphs 18

5.1 Improving the presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Multiple graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Multiple figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4 Manual scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.5 Saving and printing figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Octave programming I: Script files 25

6.1 Creating and editing a script . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Running and debugging scripts . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 Remembering previous scripts . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Control statements 27

7.1 if...else selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.2 switch selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.3 for loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.4 while loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.5 Accuracy and precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3



8 Octave programming II: Functions 34

8.1 Example 1: Sine in degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Creating and using functions . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3 Example 2: Unit step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Matrices and vectors 42

9.1 Matrix multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2 The transpose operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.3 Matrix creation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.4 Building composite matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.5 Matrices as tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.6 Extracting bits of matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10 Basic matrix functions 46

11 Solving Ax = b 51

11.1 Solution when A is invertible . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.2 Gaussian elimination and LU factorisation . . . . . . . . . . . . . . . . . . . 52
11.3 Matrix division and the slash operator . . . . . . . . . . . . . . . . . . . . . 52
11.4 Singular matrices and rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.5 Ill-conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
11.6 Over-determined systems: Least squares . . . . . . . . . . . . . . . . . . . . 55
11.7 Example: Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

12 More graphs 56

12.1 Putting several graphs in one window . . . . . . . . . . . . . . . . . . . . . 56
12.2 3D plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.3 Changing the viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.4 Plotting surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
12.5 Images and Movies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

13 Eigenvectors and the Singular Value Decomposition 64

13.1 The eig function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
13.2 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . 65
13.3 Approximating matrices: Changing rank . . . . . . . . . . . . . . . . . . . . 66
13.4 The svd function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
13.5 Economy SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

14 Complex numbers 69

14.1 Plotting complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
14.2 Finding roots of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 70

15 Appendix - Setup conditions 71

16 Further reading 71

4



1 Introduction

1.1 What is Octave?

Octave is an opensource interactive software system for numerical computations and
graphics. It is particularly designed for matrix computations: solving simultaneous equa-
tions, computing eigenvectors and eigenvalues and so on. In many real-world engineering
problems the data can be expressed as matrices and vectors, and boil down to these form
of solutions. In addition, Octave can display data in a variety of different ways, and
it also has its own programming language which allows the system to be extended. It
can be though of as a very powerful, programmable, graphical calculator. Octave makes
it easy to solve a wide range of numerical problems, allowing you to spend more time
experimenting and thinking about the wider problem.

Octave was originally developed as a companion software to a undergraduate course
book on chemical reactor design5. It is currently being developed under the leadership of
Dr. J.W. Eaton and released under the GNU General Public Licence. Octave’s usefulness
is enhanced in that it is mostly syntax compatible with MATLAB which is commonly used
in industry and academia.

1.2 What Octave is not

Octave is designed to solve mathematical problems numerically, that is by calculating
values in the computer’s memory. This means that it can’t always give an exact solution
to a problem, and it should not be confused with programs such as Mathematica or
Maple, which give symbolic solutions by doing the algebraic manipulation. This does not
make it better or worse—it is used for different tasks. Most real mathematical problems
(particularly engineering ones!) do not have neat symbolic solutions.

1.3 Who uses Octave?

Octave and MATLAB are widely used by engineers and scientists, in both industry and
academia for performing numerical computations, and for developing and testing math-
ematical algorithms. For example, NASA use it to develop spacecraft docking systems;
Jaguar Racing use it to display and analyse data transmitted from their Formula 1 cars;
Sheffield University use it to develop software to recognise cancerous cells. It makes it
very easy to write mathematical programs quickly, and display data in a wide range of
different ways.

1.4 Why not use a ‘normal’ highlevel language, e.g. C++

C++ and other industry-standard programming languages are normally designed for writ-
ing general-purpose software. However, solutions to mathematical problems take time to
program using C++, and the language does not natively support many mathematical con-
cepts, or displaying graphics. Octave is specially designed to solve these kind of problems,
perform calculations, and display the results. Even people who will ultimately be writing

5www.octave.org/history.html
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software in languages like C++ sometimes begin by prototyping any mathematical parts
using Octave, as that allows them to test the algorithms quickly.

Octave is available on the MDP Resource CD and can be downloaded from www.octave.org
if required.

2 Simple calculations

2.1 Starting Octave

If not already running start Octave, (see start → Programs → Octave on the MDP
CD.) or type in a xterm window

octave

After a pause, a logo will briefly pop up in another window, and the terminal will
display the header similar to this:

GNU Octave, version 2.1.57 (i386-pc-linux-gnu).

Copyright (C) 2004 John W. Eaton.

This is free software; see the source code for copying conditions.

There is ABSOLUTELY NO WARRANTY; not even for MERCHANTIBILITY or

FITNESS FOR A PARTICULAR PURPOSE. For details, type ‘warranty’.

Additional information about Octave is available at http://www.octave.org.

Please contribute if you find this software useful.

For more information, visit http://www.octave.org/help-wanted.html

Report bugs to <bug-octave@bevo.che.wisc.edu> (but first, please read

http://www.octave.org/bugs.html to learn how to write a helpful report).

octave:1>

and you are now in the Octave environment. The octave:1> is the Octave prompt,
asking you to type in a command.

If you want to leave Octave at any point, type quit at the prompt.

2.2 Octave as a calculator

The simplest way to use Octave is just to type mathematical commands at the prompt,
like a normal calculator. All of the usual arithmetic expressions are recognised. For
example, type

octave:##> 2+2

at the prompt and press return, and you should see

ans = 4

The basic arithmetic operators are + - * /, and ^ is used to mean ‘to the power of’
(e.g. 2^3=8). Brackets ( ) can also be used. The order precedence is the same usual
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i.e. brackets are evaluated first, then powers, then multiplication and division, and finally
addition and subtraction. Try a few examples.

2.3 Built-in functions

As well as the basic operators, Octave provides all of the usual mathematical functions,
and a selection of these can be seen in Table 1. These functions are invoked as in C++
with the name of the function and then the function argument (or arguments) in ordinary
brackets (), for example6

octave:##> exp(1)

ans = 2.7183

Here is a longer expression: to calculate 1.2 sin(40◦ + ln(2.42)), type

octave:##> 1.2 * sin(40*pi/180 + log(2.4^2))

ans = 0.76618

There are several things to note here:

• An explicit multiplication sign is always needed in equations, for example between
the 1.2 and sin.

• The trigonometric functions (for example sin) work in radians. The factor π/180
can be used to convert degrees to radians. pi is an example of a named variable,
discussed in the next section.

• The function for a natural logarithm is called ‘log’, not ‘ln’.

Using these functions, and the usual mathematical constructions, Octave can do all
of the things that your normal calculator can do.

3 The Octave environment

As we can see from the examples so far, Octave has an command-line interface—
commands are typed in one at a time at the prompt, each followed by return. Octave is
an interpreted language, which means that each command is converted to machine code
after it has been typed. In compiled languages, e.g. C++, language the whole program
is typed into a text editor, these are all converted into machine code in one go using a
compiler, and then the whole program is run. These compiled programs run more quickly
than an interpreted program, but take more time to put together. It is quicker to try
things out with Octave, even if the calculation takes a little longer.7

6A function’s arguments are the values which are passed to the function which it uses to calculate its
response. In this example the argument is the value ‘1’, so the exponent function calculates the exponential
of 1 and returns the value (i.e. e1 = 2.7183).

7
Octave can call external C++ functions however the functionality is less than MATLAB.
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cos Cosine of an angle (in radians)
sin Sine of an angle (in radians)
tan Tangent of an angle (in radians)
exp Exponential function (ex)
log Natural logarithm (NB this is loge, not log10)
log10 Logarithm to base 10
sinh Hyperbolic sine
cosh Hyperbolic cosine
tanh Hyperbolic tangent
acos Inverse cosine
acosh Inverse hyperbolic cosine
asin Inverse sine
asinh Inverse hyperbolic sine
atan Inverse tangent
atan2 Two-argument form of inverse tangent
atanh Inverse hyperbolic tangent

abs Absolute value
sign Sign of the number (−1 or +1)
round Round to the nearest integer
floor Round down (towards minus infinity)
ceil Round up (towards plus infinity)
fix Round towards zero
rem Remainder after integer division

Table 1: Basic maths functions
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3.1 Named variables

In any significant calculation you are going to want to store your answers, or reuse values,
just like using the memory on a calculator. Octave allows you to define and use named
variables. For example, consider the degrees example in the previous section. We can
define a variable deg to hold the conversion factor, writing

octave:##> deg = pi/180

deg =0.017453

Note that the type of the variable does not need to be defined, unlike most high level
languages e.g. in C++. All variables in Octave are floating point numbers.8 Using this
variable, we can rewrite the earlier expression as

octave:##> 1.2 * sin(40*deg + log(2.4^2))

ans =0.76618

which is not only easier to type, but it is easier to read and you are less likely to make
a silly mistake when typing the numbers in. Try to define and use variables for all your
common numbers or results when you write programs.

You will have already have seen another example of a variable in Octave. Every time
you type in an expression which is not assigned to a variable, such as in the most recent
example, Octave assigns the answer to a variable called ans. This can then be used in
exactly the same way:

octave:##> new = 3*ans

new =2.2985

Note also that this is not the answer that would be expected from simply performing
3 × 0.76618. Although Octave displays numbers to only a few decimal places (usually
five)9, it stores them internally, and in variables, to a much higher precision, so the answer
given is the more accurate one.10 In all numerical calculations, an appreciation of the
rounding errors is very important, and it is essential that you do not introduce any more
errors than there already are! This is another important reason for storing numbers in
variables rather than typing them in each time.

When defining and using variables, the capitalisation of the name is important: a is a
different variable from A. There are also some variable names which are already defined and
used by Octave. The variable ans has also been mentioned, as has pi, and in addition i

and j are also defined as
√
−1 (see Section 14). Octave won’t stop you redefining these

8Or strings, but those are obvious from the context. However, even strings are stored as a vector of
character ID numbers.

9MATLAB normally displays to 4 or 5 decimal places
10

Octave stores all numbers in IEEE floating point format to double (64-bit) precision. The value of
ans here is actually 0.766177651029692 (to 15 decimal places).
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as whatever you like, but you might confuse yourself, and Octave, if you do! Likewise,
giving variables names like sin or cos is allowed, but also not to be recommended.

If you want to see the value of a variable at any point, just type its name and press
return. If you want to see a list of all the named functions, variables11 you have created
or used, type

octave:##> who

*** dynamically linked functions:

dispatch

*** currently compiled functions:

rem

*** local user variables:

deg new

You will occasionally want to remove variables from the workspace, perhaps to save
memory, or because you are getting confusing results using that variable and you want to
start again. The clear command will delete all variables, or specifying

clear name

will just remove the variable called name .

3.2 Numbers and formatting

We have seen that Octave usually displays numbers to five significant figures. The format
command allows you to select the way numbers are displayed. In particular, typing

octave:##> format long

will set Octave to display numbers to fifteen+ significant figures, which is about the
accuracy of Octave’s calculations. If you type help format you can get a full list of the
options for this command. With format long set, we can view the more accurate value
of deg:

octave:##> deg

deg =.0174532925199433

>> format short

11Normally MATLAB only displays the user (Your) variables + ans
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The second line here returns Octave to its normal display accuracy.
Octave displays very large or very small numbers using exponential notation, for

example: 13142.6 = 1.31426 × 104, which is displayed by Octave as 1.3143e+04. You
can also type numbers into Octave using this format.

There are also some other kinds of numbers recognised, and calculated, by Octave:

Complex numbers (e.g. 3+4i) Are fully understood by Octave, as discussed further
in Section 14

Infinity (Inf) The result of dividing a number by zero. This is a valid answer to a
calculation, and may be assigned to a variable just like any other number

Not a Number (NaN) The result of zero divided by zero, and also of some other oper-
ations which generate undefined results. Again, this may be treated just like any
other number (although the results of any calculations using it are still always NaN).

3.3 Number representation and accuracy

Numbers in Octave, as in all computers, are stored in binary rather than decimal. In
decimal (base 10), 12.25 means

12.25 = 1× 101 + 2× 100 + 2× 10−1 + 5× 10−2

but in binary (base 2) it would be written as

1101.01 = 1× 23 + 1× 22 + 0× 21 + 1× 20 + 0× 2−1 + 1× 2−2 = 12.25

Using binary is ideal for computers since it is just a series of ones and zeros, which can
be represented by whether particular circuits are on or off. A problem with representing
numbers in a computer is that each number can only have a finite number circuits, or bits,
assigned to it, and so can only have a finite number of digits. Consider this example:

octave:##> 1 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2

ans = 5.5511e-017

The result is very small, but not exactly zero, which is the correct answer. The reason
is that 0.2 cannot be exactly represented in binary using a finite number of digits (it is
0.0011001100 . . . ). This is for exactly the same reasons that 1/3 cannot be exactly written
as a base 10 number. Octave (and all other computer programs) represent these numbers
with the closest one they can, but repeated uses of these approximations, as seen here,
can cause problems. For this reason, you should think very carefully before checking that
a number is exactly equal to another. It is usually best to check that it is the same to
within a tolerance. We will return to this problem throughout this tutorial.

3.4 Loading and saving data

When you exit Octave, you lose all of the variables that you have created. If you need to
quit Octave when you are in the middle of doing something, you can save your current
session so that you can reload it later. If you type
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octave:##> save anyname

it will save the entire workspace to a file called anyname.mat in your current directory
(note that Octave automatically appends .mat to the end of the name you’ve given it).
You can then quit Octave, and when you restart it, you can type

octave:##> load anyname

which will restore your previous workspace, and you can carry on from where you left off.

You can also load and save specific variables. The format is

save filename var1 var2 ...

For example, if you wanted to save the deg variable, to save calculating it from scratch
(which admittedly is not very difficult in this case!), you could type

octave:##> save degconv deg

This will save the variable into a file called degconv.mat You can reload it by typing

octave:##> load degconv

Octave will also load data from text files, which is particularly useful if you want to plot
or perform calculations on measurements from some other source. The text file should
contain rows of space-separated numbers. One such file is cricket.txt, which will be
considered in Exercise 5. If you type

octave:##> load cricket.txt

this will create a new matrix, called cricket, which contains this data.

3.5 Repeating previous commands

Octave keeps a record of all the commands you have typed during a session, and you can
use the cursor keys ↑ and ↓ to review the previous commands (with the most recent first).
If you want to repeat one of these commands, just find it using the cursor keys, and press
return.

If you are looking for a particular previous command, and you know the first few
letters of the line you typed, you can type those letters and then press ↑, and it will find
all previous lines starting with those letters. For example, typing d↑ will find first the
deg command you typed earlier, and then if you press ↑ again, it will find the the deg =

pi/180 line.

Once a command has been recalled, you can edit it before running it again. You can
use ← and → to move the cursor through the line, and type characters or hit Del to
change the contents. This is particularly useful if you have just typed a long line and then
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Octave finds an error in it. Using the arrow keys you can recall the line, correct the
error, and try it again.12

3.6 Getting help

If you are not sure what a particular Octave command does, or want to find a particular
function, Octave contains an integrated help system. The basic form of using help is to
type

help commandname

For example:

octave:1> help sqrt

sqrt is a built-in function

- Mapping Function: sqrt (X)

Compute the square root of X. If X is negative, a complex

result is returned. To compute the matrix square root, see

*Note Linear Algebra::.

Overloaded function

gsqrt(galois,...)

Additional help for built-in functions, operators, and variables

is available in the on-line version of the manual. Use the command

‘help -i <topic>’ to search the manual index.

Help and information about Octave is also available on the WWW

at http://www.octave.org and via the help-octave@bevo.che.wisc.edu

mailing list.

13If you don’t know the name of the command you want, there are a number method
to find if it exists. Typing help -i at the prompt will give a list of all the main areas
of help.

More detailed information on a topic can be obtained by moving the cursor of the
item of interest and pressing <return>. The list can be navigated using the keybindings
Up, Next, Previous. etc. Or directly from the prompt, e.g. to find ou about arithmetic
functions type;

octave:##> help -i arithmetic

12On some systems the emacs key bindings are acknowledged, e.g. <ctrl>p =↑, <ctrl>n=↓, <ctrl>f=→,
< ctrl>b=←

13MATLAB help messages tend to be shorter, but always indicate the command in UPPER CASE.
Don’t copy these exactly—Octave and MATLAB commands are almost always in lower case, e.g. the
square root function is sqrt(), not SQRT()
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Note that often the help information gives an indication of which area to search for fur-
ther information, in the help sqrt example it is suggested to search the ‘Linear Algebra’
area, e.g.

octave:##> help -i linear algebra

Take some time browsing around the help system and anyone line help/manuals to get
an idea of the commands that Octave provides. 14

3.7 Cancelling a command

If you find yourself having typed a command which is taking a long time to execute (or
perhaps it is one of your own programs which has a bug which causes it to repeat endlessly),
it is very useful to know how to stop it. You can cancel the current command by typing

Ctrl-C

which should (perhaps after a small pause) return you to the command prompt.

3.8 Semicolons and hiding answers

Semicolons ‘;’ are often used in programming languages to separate functions, denote
lineends, e.g. C++ where ’;’are added to almost every line. Semicolons are not required
in Octave, but do serve a useful purpose. If you type the command as we have been doing
so far, without a final semicolon, Octave always displays the result of the expression.
However, if you finish the line with a semicolon, it stops Octave displaying the result.
This is particularly useful if you don’t need to know the result there and then, or the
result would otherwise be an enormous list of numbers:

4 Arrays and vectors

Many mathematical problems work with sequences of numbers. In many languages they
are called arrays; in Octave they are just examples of vectors. Vectors are commonly
used to represent the three dimensions of a position or a velocity, but a vector is really
just a list of numbers, and this is how Octave treats them. In fact, vectors are a simple
case of a matrix (which is just a two-dimensional grid of numbers). A vector is a matrix
with only one row, or only one column. We will see later that it is often important to

distinguish between row vectors ( · · · ) and column vectors
( ·

·
·

)

, but for the moment that

won’t concern us.

4.1 Building vectors

There are lots of ways of defining vectors and matrices. Usually the easiest thing to do is
to type the vector inside square brackets [], for example

14MATLAB has some additional search facilities including the function lookfor which allows the user to
search the help database
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octave:##> a=[1 4 5]

a =

1 4 5

octave:##> b=[2,1,0]

b =

2 1 0

octave:##> c=[4;7;10]

c =

4

7

10

A list of numbers separated by spaces or commas, inside square brackets, defines a row
vector. Numbers separated by semicolons, or carriage returns, define a column vector.

You can also construct a vector from an existing vector by including it in the definition,
for example

octave:##> a=[1 4 5]

a =

1 4 5

octave:##> d=[a 6]

d =

1 4 5 6

4.2 The colon notation

A useful shortcut for constructing a vector of counting numbers is using the colon symbol
‘:’, as in this example

octave:##> e=2:6

e =

2 3 4 5 6

The colon tells Octave to create a vector of numbers starting from the first number,
and counting up to (and including) the second number. A third number may also be
added between the two, making a : b : c. The middle number then specifies the increment
between elements of the vector.

octave:##> e=2:0.3:4

e =

15



zeros(M,N) Create a matrix where every element is zero. For
a row vector of size n, set M = 1, N = n

ones(M,N) Create a matrix where every element is one. For
a row vector of size n, set M = 1, N = n

linspace(x1, x2, N) Create a vector of N elements, evenly spaced
between x1 and x2

logspace(x1, x2, N) Create a vector of N elements, logarithmically
spaced between 10x1 and 10x2

Table 2: Vector creation functions

2.0000 2.3000 2.6000 2.9000 3.2000 3.5000 3.8000

Note that if the increment step is such that it can’t exactly reach the end number, as
in this case, it generates all of the numbers which do not exceed it. The increment can
also be negative, in which case it will count down to the end number.

4.3 Vector creation functions

Octave also provides a set of functions for creating vectors. These are outlined in Table
2. The first two in this table, zeros and ones also work for matrices, and the two function
arguments, M and N , specify the number of rows and columns in the matrix respectively.
A row vector is a matrix which has one row and as many columns as the size of the vector.
Matrices are covered in more detail in Section 9.

4.4 Extracting elements from a vector

Individual elements are referred to by using normal brackets (), and they are numbered
starting at one, not zero as in C++. If we define a vector

octave:##> a=[1:2:6 -1 0]

a =

1 3 5 -1 0

then we can get the third element by typing

octave:##> a(3)

ans =

5

The colon notation can also be used to specify a range of numbers to get several elements
at one time

octave:##> a(3:5)

ans =

5 -1 0
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octave:##> a(1:2:5)

ans =

1 5 0

4.5 Vector maths

Storing a list of numbers in one vector allows Octave to use some of its more powerful
features to perform calculations. In C++ if you wanted to do the same operation on a
list of numbers, say you wanted to multiply each by 2, you would have to use a for loop
to step through each element (see the IA C++ Tutorial, pages 29–31). This can also be
done in Octave (see Section 7), but it is much better to make use of Octave’s vector
operators.

Multiplying all the numbers in a vector by the same number, is as simple as multiplying
the whole vector by number. This example uses the vector a defined earlier:

octave:##> a * 2

ans =

2 6 10 -2 0

The same is also true for division. You can also add the same number to each element by
using the + or - operators, although this is not a standard mathematical convention.

Multiplying two vectors together in Octave follows the rules of matrix multiplication
(see Section 9), which doesn’t do an element-by-element multiplication.15 If you want to
do this, Octave defines the operators .* and ./, for example





a1

a2

a3



.*





b1
b2
b3



 =





a1b1
a2b2
a3b3





Note the ‘.’ in front of each symbol, which means it’s a element-by-element operation.
For example, we can multiply each of the elements of the vector a, defined earlier, by a
different number:

octave:##> b=[1 2 3 4 5];

octave:##> a.*b

ans =

1 6 15 -4 0

The element-by-element ‘to the power of’ operator .^ is particularly useful. It can be
used to raise a vector of numbers to a power, or to raise a number to different powers,
depending on how it is used:

15Recall that the only vector products mathematically defined are the dot and cross product, both of
which represent particular operations on two vectors, neither of which just multiply the elements together
and return another vector.
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octave:##> b .^ 2

ans =

1 4 9 16 25

octave:##> 2 .^ b

ans =

2 4 8 16 32

The first example squares each element of b; the second raises 2 to each of the powers
given in b.

All of the element-by-element vector commands (+ - ./ .* .^) can be used between two
vectors, as long as they are the same size and shape. Otherwise corresponding elements
cannot be found and an error is given.

Most of Octave’s functions also know about vectors. For example, to create a list of
the value of sine at 60-degree intervals, you just need to pass a vector of angles to the sin

function:

octave:##> angles=[0:pi/3:2*pi]

angles =

0 1.0472 2.0944 3.1416 4.1888 5.2360 6.2832

octave:##> y=sin(angles)

y =

0 0.8660 0.8660 0.0000 -0.8660 -0.8660 -0.0000

5 Plotting graphs

Octave has powerful facilities for plotting graphs via a second opensource program GNU-
PLOT16, however some of the range of plotting options are restricted relative to MATLAB
The basic command is plot(x,y), where x and y are the co-ordinates. If given just one
pair of numbers it plots a point, but usually you pass vectors, and it plots all the points
given by the two vectors, joining them up with straight lines.17 The sine curve defined in
the previous section can be plotted by typing

octave:##> plot(angles,y)

A new window should open up, displaying the graph, shown in Figure 1. Note that it
automatically selects a sensible scale, and plots the axes.

At the moment it does not look particularly like a sine wave, because we have only
taken values one every 60 degrees. To plot a more accurate graph, we need to calculate y

at a higher resolution:

16www.gnuplot.org
17The two vectors must, naturally, both be the same length.

18



0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Graph of y = sin(x), sampled every 60◦.

octave:##> angles=linspace(0,2*pi,100);

octave:##> y=sin(angles);

octave:##> plot(angles, y);

The linspace command creates a vector with 100 values evenly spaced between 0 and
2π (the value 100 is picked by trial and error). Try using these commands to re-plot the
graph at this higher resolution. Remember that you can use the arrow keys ↑ and ↓ to go
back and reuse your previous commands. typeouttest

5.1 Improving the presentation

You can select the colour and the line style for the graph by using a third argument in
the plot command. For example, to plot the graph instead with red circles, type

octave:##> plot(angles, y, ’ro’)

The last argument is a string which describes the desired styles. Table 3 shows the
possible values (also available by typing help plot in Octave).

To put a title onto the graph, and label the axes, use the commands title, xlabel
and ylabel:

octave:##> title(’Graph of y=sin(x)’)

octave:##> xlabel(’Angle’)

octave:##> >> ylabel(’Value’)

Strings in Octave (such as the names for the axes) are delimited using apostrophes
(’).

In some circumstances the command replot has to called to enable the graph to
update.

A grid may also be added to the graph, by typing

octave:##> grid on
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w whitew . point - solid
m magenta o circle :† dotted
c cyan x x-mark -.† dashdot
r red + plus --† dashed
g green * star
b blue s† square
y† yellow d† diamond
k† black v† triangle (down)

||† triangle (up)
<† triangle (left)
>† triangle (right)
p† pentagram
h† hexagram

Table 3: Colours and styles for symbols and lines in the plot command (see help plot).. (†N.B. Only
available in MATLAB)
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Figure 2: Graph of y = sin(x), marking each sample point with a red circle.
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Figure 3: Graphs of y = sin(x) and y = cos(x).

Figure 2 shows the result. You can resize the figure or make it a different height and
width by dragging the corners of the figure window.

5.2 Multiple graphs

Several graphs can be drawn on the same figure by adding more arguments to the plot

command, giving the x and y vectors for each graph. For example, to plot a cosine curve
as well as the previous sine curve, you can type

octave:##> plot(angles,y,’:’,angles,cos(angles),’-’)

where the extra three arguments define the cosine curve and its line style. You can
add a legend to the plot using the legend command:

octave:##> legend(’Sine’, ’Cosine’)

where you specify the names for the curves in the order they were plotted. If the
legend doesn’t appear in a sensible place on the graph, you can pick it up with the mouse
and move it elsewhere. You should be able to get a pair of graphs looking like Figure 3.

Thus far, every time you have issued a plot command, the existing contents of the
figure have been removed. If you want to keep the current graph, and overlay new plots
on top of it, you can use the hold command. Using this, the two sine and cosine graphs
could have been drawn using two separate plot commands:

octave:##> plot(angles,y,’:’)

octave:##> hold on

octave:##> plot(angles,cos(angles),’g-’)

octave:##> legend(’Sine’, ’Cosine’)
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Figure 4: Graph of y = tan(x) with the default scaling, and using axis([0 7 -5 5])

Notice that if you do this Octave does not automatically mark the graphs with
different colours, but it can still work out the legend. If you want to release the lock on
the current graphs, the command is (unsurprisingly) hold off.

5.3 Multiple figures

You can also have multiple figure windows. If you type

octave:##> figure

a new window will appear, with the title ‘Figure No. 1’. All plot commands will now
go to this new window. For example, typing

octave:##> plot(angles, tan(angles))

will plot the tangent function in this new window (see Figure 4(a)).

If you want to go back and plot in the first figure, you can type

octave:##> figure(0)

5.4 Manual scaling

The tangent function that has just been plotted doesn’t look quite right because the
angles vector only has 100 elements, and so very few points represent the asymptotes.
However, even with more values, and including π/2, it would never look quite right, since
displaying infinity is difficult (Octave doesn’t even try).
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We can hide these problems by zooming in on the part of the graph that we’re really
interested in. The axis command lets us manually select the axes. The axis command
takes one argument which is a vector defined as

(

xmin, xmax, ymin, ymax

)

. So if we type

octave:##> figure(2)

octave:##> axis([0 7 -5 5])

the graph is rescaled as shown in Figure 4(b). Note the two sets of brackets in the axis
command—the normal brackets which surround the argument passes to the function, and
the square brackets which define the vector, which is the argument.

Mouse Actions

MMB Annotate the graph.
RMB Mark Zoom region.

Key Bindings Actions

a Autoscale and Replot
b Toggle Border
e Replot (removes annotations)
g Toggle grid
h Help
l Toggle Logscales
L Toggle individual axis
m Toggle Mouse control
r Toggle Ruler
1 Decrement mousemode
2 Increment mousemode
3 Decrement clipboardmode
4 Increment clipboardmode
5 Toggle polardistance‘
6 Toggle verbose
7 Toggle graph size ratio
n Go to next zoom in the zoom stack
p Go to previous zoom in the zoom stack
u Unzoom

Escape Cancel zoom region

Table 4: Mouse and Keybinds for interaction with 2D graphs, (LMB - Left Mouse Button, RMB - Right
Mouse Button), see also table 8.

Octave, combined with GnuPlot, allows direct interaction with the graphics window,
e.g. to zoom in drag a box around the area of interest with the right mouse button pressed
and select with the left mouse button. Details of other mouse actions and keybindings
(when the graphic window is selected) are shown in table 4. 18

18In MATLAB access to graphics commands is via icons and menus surrounding the graph window
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5.5 Saving and printing figures

Octave/Gnuplot do not offer a mouse/hotkey driven printing facility. However, graphs
can be printed to the default printer from command line by typing print at the prompt.
help print gives information about the many print options available, including

octave:##> print(‘graph1.eps’,’-deps’)

to save an encapsulated postscript version of the graph to a file graph1.eps.

octave:##> print(‘graph1.png’,’-dpng’)

to save an PNG format image
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6 Octave programming I: Script files

If you have a series of commands that you will want to type again and again, you can
store them away in a Octave script. This is a text file which contains the commands,
and is the basic form of a Octave program. When you run a script in Octave, it has the
same effect as typing the commands from that file, line by line, into Octave. Scripts are
also useful when you’re not quite sure of the series of commands you want to use, because
its easier to edit them in a text file than using the cursor keys to recall and edit previous
lines that you’ve tried.

Octave scripts are normal text files, but they must have a .m extension to the filename
(e.g. run.m). For this reason, they are sometimes also called M-files. The rest of the
filename (the word ‘run’ in this example) is the command that you type into Octave to
run the script.

6.1 Creating and editing a script

You can create a script file in any text editor (e.g. emacs, notepad), and you can start up
a text editor from within Octave by typing

octave:##> edit

This will start up the emacs editor in a new window.19 If you want to edit an existing
script, you can include the name of the script. If, for example, you did have a script called
run.m, typing edit run, would open the editor and load up that file for editing.

In the editor, you just type the commands that you want Octave to run. For example,
start up the editor if you haven’t already and then type the following commands into the
editor (but first delete any lines that emacs may have left)

% Script to calculate and plot a rectified sine wave

t = linspace(0, 10, 100);

y = abs(sin(t)); %The abs command makes all negative numbers positive

plot(t,y);

title(’Rectified Sine Wave’);

labelx(’t’);

The percent symbol (%) identifies a comment, and any text on a line after a % is ig-
nored by Octave. Comments should be used in your scripts to describe what it does,
both for the benefit of other people looking at it, and for yourself a few weeks down the
line.

Select File → Save Buffer As... from the editor’s menu, and save your file as
rectsin.m. You have now finished with the editor window, but you might as well leave it
open, since you will no doubt need the editor again.

19edit can be configured to start up the text editor of your choice.
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Figure 5: A rectified sine wave, produced by the rectsin script

6.2 Running and debugging scripts

To run the script, type the name of the script in the main Octave command window.
For the script you have just created, type

octave:##> rectsin

A figure window should appear showing a rectified sine wave. However, if you typed
the script into the editor exactly as given above, you should also now see in the Octave

command window:

error: ‘labelx’ undefined near line 6 column 2

error: near line 6 of file ‘/mnt/hda7/Octave/retsin.m’

which shows that there is an error in the script.20 Octave error messages make more
sense if they are read from bottom to top. This one says that on line 6 of rectsin.m, it
doesn’t know what to do about the command ‘labelx’. The reason is, of course that the
command should be ‘xlabel’. Go back to the editor, correct this line, and then save the

file again. Don’t forget to save the file each time you edit it.

Try running the corrected script by typing rectsin again, and this time it should
correctly label the x-axis, as shown in Figure 5.

6.3 Remembering previous scripts

Scripts are very useful in Octave, and if you are not careful you soon find yourself with
many scripts to do different jobs and you then start to forget which is which. If you want
to know what scripts you have, you can use the what command to give a list of all of your
scripts and data files:

octave:##> what

m-files in current directory /mnt/hda7/Octave/tutorial

20If you spotted the error when you were typing the script in, and corrected it, well done!
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drawstumps.m randommovie.m rectsin.m

mat-files in current directory /mnt/hda7/Octave/tutorial

flush.mat fountain.mat steam.mat

You should see that as well as rectsin there are two more scripts (M-files) in the di-
rectory, which will be needed for later exercises. The MAT-files are data files (see section
3.4) needed for Exercise 6.

The Octave help system will also automatically recognise your scripts. If you ask for
help on the rectsin script you should get

>> help rectsin

Script to calculate and plot a rectified sine wave

Octave assumes that the first lines of comments in the M-file are a description of the
script, and this is what it prints when you ask for help. You should add help lines to the
top of every script you write to help you search through the scripts you write.

7 Control statements

Thus far the programs and expressions that we have seen have contained simple, sequential
operations. The use of vectors (and later matrices) enable some more sophisticated com-
putations to be performed using simple expressions, but to proceed further we need some
more of the standard programming constructs. Octave supports the usual loops and
selection facilities. You should be familiar with all of these from the IA C++ computing
course.

7.1 if...else selection

In programs you quite often want to perform different commands depending on some test.
The if command is the usual way of allowing this. The general form of the if statement
in Octave is

if expression

statements

elseif expression

statements

else

statements

end

This is slightly different to the syntax in seen C++: brackets () are not needed around
the expression (although can be used for clarity), and the block of statements does not
need to be delimited with braces {}. Instead, the end command is used to mark the end
of the if statement.

While control statements, such as if, are usually seen in Octave scripts, they can
also be typed in at the command line as in this example:
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symbol meaning example

== equal if x == y

~= not equal if x ~= y

> greater than if x > y

>= greater than or equal if x >= y

< less than if x < y

<= less than or equal if x <= y

& AND if x == 1 & y > 2

| OR if x == 1 | y > 2

~ NOT x = ~y

Table 5: Boolean expressions

octave:##> a=0; b=2;

octave:##> if a > b

c=3

else

c=4

end

c =

4

If you are typing them in at the command prompt, Octave waits until you have typed
the final end before evaluating the expression.

Many control statements rely on the evaluation of a logical expression—some statement
that can be either true or false depending on the current values. In Octave, logical
expressions return numbers: 0 if the expression is false and 1 if it is true:

octave:##> 1==2

ans =

0

octave:##> pi > exp(1) & sqrt(-1) == i

ans =

1

a complete set of relational and logical operators are available, as shown in Table 5. Note
that they are not quite the same as in C++.

7.2 switch selection

If you find yourself needing multiple if/elseif statements to choose between a variety of
different options, you may be better off with a switch statement. This has the following
format:
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switch x

case x1 ,

statements

case x2 ,

statements

otherwise,

statements

end

In a switch statement, the value of x is compared with each of the listed cases, and if
it finds one which is equal then the corresponding statements are executed. Note that,
unlike C++, a break command is not necessary—Octave only executes commands until
the next case command. If no match is found, the otherwise statements are executed,
if present. Here is an example:

octave:##> a=1;

octave:##> switch a

case 0

disp(’a is zero’);

case 1

disp(’a is one’);

otherwise

disp(’a is not a binary digit’);

end

a is one

The disp function displays a value or string. In this example it is used to print strings,
but it can also be used with variables, e.g. disp(a) will print the value of a.

7.3 for loops

The programming construct you are likely to use the most is the for loop, which repeats
a section of code a number of times, stepping through a set of values. In Octave you
should try to use vector arithmetic rather than a for loop, if possible, since a for loop is
about 40 times slower.21 However, there are times when a for loop is unavoidable. The
syntax is

for variable = vector

statements

end

21This does not mean that for loops are slow, just that Octave is highly optimised for matrix/vector
calculations. Furthermore, many modern computers include special instructions to speed up matrix com-
putations, since they are fundamental to the 3D graphics used in computer games. For example, the
‘MMX’ instructions added to the Intel Pentium processor in 1995, and subsequent processors, are ‘Matrix
Maths eXtensions’.
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where vector contains the numbers to step though. Usually, this is expressed in the colon
notation (see Section 4.2), as in this example, which creates a vector holding the first 5
terms of n factorial:

octave:##> for n=1:5

nf(n) = factorial(n);

end

octave:##> disp(nf)

1 2 6 24 120

Note the use of the semicolon on the end of the line in the for loop. This prevents
Octave from printing out the current value of nf(n) every time round the loop, which
would be rather annoying (try it without the semicolon if you like).

7.4 while loops

If you don’t know exactly how many repetitions you need, and just want to loop until
some condition is satisfied, Octave provides a while loop:

while expression

statements

end

For example,

octave:##> x=1;

octave:##> while 1+x > 1

x = x/2;

end

octave:##> x

x =

1.1102e-016

7.5 Accuracy and precision

The above while loop continues halving x until adding x to 1 makes no difference i.e. x is
zero as far as Octave is concerned, and it can be seen that this number is only around
10−16. This does not mean that Octave can’t work with numbers smaller than this (the
smallest number Octave can represent is about 2.2251 × 10−308).22 The problem is that

22The Octave variables realmax and realmin tell you what the minimum and maximum numbers are
on any computer (the maximum on the teaching system computers is about 1.7977 × 10308). In addition,
the variable eps holds the ‘distance from 1.0 to the next largest floating point number’—a measure of the
possible error in any number, usually represented by ε in theoretical calculations. On the teaching system
computers, eps is 2.2204 × 10−16. In our example, when x has this value, 1+x does make a difference, but
then this value is halved and no difference can be found.
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the two numbers in the operation are of different orders of magnitude, and Octave can’t
simultaneously maintain its accuracy in both.

Consider this example:

a = 13901 = 1.3901 × 104

b = 0.0012 = 1.2× 10−3

If we imagine that the numerical accuracy of the computer is 5 significant figures in
the mantissa (the part before the ×10k), then both a and b can be exactly represented.
However, if we try to add the two numbers, we get the following:

a+ b = 13901.0012 = 1.39010012 × 104

= 1.3901 × 104 to 5 significant figures

So, while the two numbers are fine by themselves, because they are of such different
magnitudes their sum cannot be exactly represented.

This is exactly what is happening in the case of our while loop above. Octave (and
most computers) are accurate to about fifteen significant figures, so once we try to add
1×10−16 to 1, the answer requires a larger number of significant figures than are available,
and the answer is truncated, leaving just 1.

There is no general solution to these kind of problems, but you need to be aware that
they exist. It is most unusual to need to be concerned about the sixteenth decimal place
of an answer, but if you are then you will need to think very carefully about how you go
about solving the problem. The answer is to think about how you go about formulating
your solution, and make sure that, in the solution you select, the numbers you are dealing
with are all of of about the same magnitude.

Summary

After reading through sections 6 and 7 of the tutorial guide and working through the
examples you should be able to:

� Create and use scripts to store a series of commands

� Use loops and conditionals to control program execution
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Exercise 2: Finding π using the arctangent series

A. Theory

The search to determine π to a greater and greater accuracy has occupied mathematicians
for millennia. In the IA C++ course you considered two methods for calculating π, one by
Euler and one by Archimedes. Archimedes’s approach, of inscribing and circumscribing
circles, was the method of choice from the 3rd century BC until the 17th century AD.
In 1671, James Gregory (1638–1675) found the now-standard power series for arctangent,
which can be found in the Mathematics Databook:

tan−1 z = z − z3

3
+
z5

5
− · · ·

Three years later, Gottfried Wilhelm Leibniz (1646–1716) independently found and pub-
lished the same series, noting a special case: that tan π

4
= 1. In other words, putting z = 1

into the arctangent series, gives an approximation for π
4
, and hence for π. The arctangent

series is still the way that π is calculated today.

In 1699, Abraham Sharp (1651-1742) broke the previous record for the accuracy of
π, finding 72 digits (which may not seem many, but is more than the native accuracy of
Octave). He also used the arctangent series but realised that if, instead of z = 1, he used
the identity tan π

6
= 1√

3
, he would get much quicker convergence.

B. Exercise

1. Write a Octave script to calculate the first 50 terms in the arctangent series using
z = 1 and plot a graph showing the value of π estimated after each term. Calculate
the difference between your estimate and π after 25, 30 and 50 terms.

2. Now modify the script to also calculate the first 50 terms in the estimate for π using
z = 1√

3
, plotting these in a different colour on the same graph. Why do you think

the second series converges so much faster? Again, calculate the difference between
your estimate and π after 25, 30 and 50 terms. What behaviour do you see, and
why?

C. Implementation notes

i. Try things out in Octave first

Remember that a Octave script is just a series of commands that you could equally
well type in at the command line. Try things out in Octave first of all, before
adding them to the script.

ii. Read error messages from bottom to top

If you get errors when you run your script, remember that these are best read from
bottom to top.

iii. Alternating signs and odd numbers

You can get a sequence of alternating signs by using (−1)n, which is +1 when n is

32



even, and −1 when n is odd. To produce only odd numbers from a counting sequence
involving all positive integers n, you can use (2n− 1).

iv. Don’t plot points inside the loop

Producing output to the screen or a file is the slowest part of many programs, and
you should think about how to keep I/O to a minimum if you want to write an
efficient program. If you plot each point as you calculate it inside your loop, the
program will run very slowly. Instead, store your points in a vector as you calculate
them and then output them all in one go at the end of the script. This will also allow
you to join the points up, and to easily extract the spot points that the exercise asks
for.

D. Understanding

Why does the z = 1/
√

3 series converges faster, and why does it behave as it does for a
high number of terms.

Exercise 2*: Vectorising

The usual solution to Exercise 2 (and a perfectly acceptable one) is to use a for loop to
step through the series, calculating the term and adding it on. However, the solution can
instead be vectorised, i.e. performed entirely using vector calculations. This runs much
faster (because Octave is good at vectors), and can be written in just one line. Try
writing the general equation for the nth term of the series in such a way that it will also
work when a vector is given to it. Give it a vector of numbers from 1 to 50, pass the result
through the cumsum (look it up in the help system) function and finally plot that vector to
give the answer. Try this approach, and the solution with a for loop, with 50,000 terms
to see the difference that vectorising makes. Be prepared to wait a while for the for loop
solution!
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8 Octave programming II: Functions

Scripts in Octave let you write simple programs, but more powerful than scripts are
user-defined functions. These let you define your own Octave commands which you can
then use either from the command line, or in other functions or scripts.

You will have come across functions in the C++ computing course, where they are used
for exactly the same purposes as in Octave. However, Octave functions are somewhat
simpler: variables are always passed by value, never by reference. Octave functions
can, however, return more than one value.23 Basically, functions in Octave are passed
numbers, perform some calculations, and give you back some other numbers.

A function is defined in an text file, just like a script, except that the first line of the
file has the following form:

function [output1,output2,...] = name(input1,input2,...)

Each function is stored in a different M-file, which must have the same name as the

function. For example, a function called sind() must be defined in a file called sind.m.
Each function can accept a range of arguments, and return a number of different values.

Whenever you find yourself using the same set of expressions again and again, this is
a sign that they should be wrapped up in a function. When wrapped up as a function,
they are easier to use, make the code more readable, and can be used by other people in
other situations.

8.1 Example 1: Sine in degrees

Octave uses radians for all of its angle calculations, but most of us are happier working
in degrees. When doing Octave calculations you could just always convert your angle
d to radians using sin(d/180*pi), or even using the variable deg as defined in Section
3.1, writing sin(d*deg). But it would be simpler and more readable if you could just
type sind(d) (‘sine in degrees’), and we can create a function to do this. Such a function
would be defined by creating a file sind.m containing just the following lines:

function s = sind(x)

%SIND(X) Calculates sine(x) in degrees

s = sin(x*pi/180);

This may seem trivial, but many functions are trivial and it doesn’t make them any
less useful. We’ll look at this function line-by-line:

Line 1 Tells Octave that this file defines a function rather than a script. It says that
the function is called sind, and that it takes one argument, called x. The result of
the function is to be known, internally, as s. Whatever s is set to in this function is
what the user will get when they use the sind function.

23When variables are passed by value, they are read only—the values can be read and used, but cannot be
altered. When variables are passed by reference (in C++), their values can be altered to pass information
back from the function. This is required in C++ because usually only one value can be returned from a
function; in Octave many values can be returned, so passing by reference is not required.
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Line 2 Is a comment line. As with scripts, the first set of comments in the file should
describe the function. This line is the one printed when the user types help sind. It
is usual to use a similar format to that which is used by Octave’s built-in functions.

Line 3 Does the actual work in this function. It takes the input x and saves the result of
the calculation in s, which was defined in the first line as the name of the result of
the function.

End of the function Functions in Octave do not need to end with return (although
you can use the return command to make Octave jump out of a function in the
middle). Because each function is in a separate M-file, once it reaches the end of the
file, Octave knows that it is the end of the function. The value that s has at the
end of this function is the value that is returned.

8.2 Creating and using functions

Create the above function by opening the editor (type edit if it’s not still open) and
typing the lines of the function as given above. Save the file as sind.m, since the text file
must have the same name as the function, with the addition of .m.

You can now use the function in the same way as any of the built-in Octave functions.
Try typing

octave:##> help sind

SIND(X) Calculates sine(x) in degrees

which shows that the function has been recognised by Octave and it has found the help
line included in the function definition. Now we can try some numbers

octave:##> sind(0)

ans =

0

octave:##> sind(45)

ans =

0.7071

octave:##> t = sind([30 60 90])

t =

0.5000 0.8660 1.0000

This last example shows that it also automatically works with vectors. If you call the
sind function with a vector, it means that the x parameter inside the function will be a
vector, and in this case the sin function knows how to work with vectors, so can give the
correct response.
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8.3 Example 2: Unit step

Here is a more sophisticated function which generates a unit step, defined as

y =

{

0 if t < t0

1 otherwise

This function will take two parameters: the times for which values are to be generated,
and t0, the time of the step. The complete function is given below:

function y = ustep(t, t0)

%USTEP(t, t0) unit step at t0

% A unit step is defined as

% 0 for t < t0

% 1 for t >= t0

[m,n] = size(t);

% Check that this is a vector, not a matrix i.e. (1 x n) or (m x 1)

if m ~= 1 & n ~=1

error(’T must be a vector’);

end

y = zeros(m, n); %Initialise output array

for k = 1:length(t)

if t(k) >= t0

y(k) = 1; %Otherwise, leave it at zero, which is correct

end

end

Again, we shall look at this function definition line-by-line:

Line 1 The first line says that this is a function called ustep, and that the user must
supply two arguments, known internally as t and t0. The result of the function is
one variable, called y.

Lines 2-5 Are the description of the function. This time the help message contains several
lines.

Line 6 The first argument to the ystep function, t, will usually be a vector, rather than
a scalar, which contains the time values for which the function should be evaluated.
This line uses the size function, which returns two values: the number of rows and
then the number of columns of the vector (or matrix). This gives an example of how
functions in Octave can return two things—in a vector, of course. These values are
used to create an output vector of the same size, and to check that the input is a
vector.

Lines 7-10 Check that the input t is valid i.e. that it is not a matrix. This checks that
it has either one row or one column (using the result of the size function). The
error function prints out a message and aborts the function if there is a problem.

Line 11 As the associated comment says, this line creates the array to hold the output
values. It is initialised to be the same size and shape as the input t, and for each
element to be zero.
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Figure 6: A unit, one second pulse created from two unit steps, using the function ustep.

Line 12 For each time value in t, we want to create a value for y. We therefore use a for

loop to step through each value. The length function tells us how many elements
there are in the vector t.

Lines 13–15 According to our definition, if t < t0, then the step function has the value
zero. Our output vector y already contains zeros, so we can ignore this case. In the
other case, when t ≥ t0, the output should be 1. We test for this case and set y, our
output variable, accordingly.

As in most high level languages, all variables created inside a function (m, n and k in
this case) are local to the function. They only exist for the duration of the function, and
do not overwrite any variables of the same name elsewhere in Octave. The only variables
which are passed back are the return values defined in the first function line: y in this
case.

Type this function into the editor, and save it as ustep.m. We can now use this
function to create signal. For example, to create a unit pulse of duration one second,
starting at t = 0, we can first define a time scale:

octave:##> t=-1:0.1:4;

and then use ustep twice to create the pulse:

octave:##> v = ustep(t, 0) - ustep(t, 1);

octave:##> plot(t, v)

octave:##> axis([-1 4 -1 2])

This should display the pulse, as shown in Figure 6. If we then type

octave:##> who

*** dynamically linked functions:
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dispatch

*** currently compiled functions:

plt2 plt isscalar isvector rows

plt2vv axis isstr plot ustep

*** local user variables:

t v

we can confirm that the variables m and n defined in the ustep function only lasted as
long as the function did, and are not part of the main workspace. Any other variable listed
e.g. y variable will still have the value from an earlier definition, e.g. y by the rectsin

script, rather than the values defined for the variable y in the ustep function. Variables
defined and used inside functions are completely separate from the main workspace.
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8.4 Summary

After reading through sections 8 of the tutorial guide and working through the examples
you should be able to:

� Define and use your own functions

Exercise 3: Finding roots by the Newton-Raphson method

A. Theory

You may remember that in the IA C++ computing exercise you found the solution to
f(x) = 0 using the Bisection method, which simply finds points where the function changes
sign. This is a perfectly acceptable method, but can converge rather slowly. A better
approach is to use extra information: the derivative of the function as well as its value,
and this is the basis of Newton’s method, commonly called the Newton-Raphson method.

Figure 7: Example of the Newton-Raphson method. Starting from an initial guess (labelled ‘1’), the local
derivative is extrapolated to generate the next guess of the root, and so on.

The method is best understood graphically, as demonstrated in Figure 7. The tangent
line to the curve is calculated at the current guess, xi, (here starting at point ‘1’) and is
extrapolated until it crosses the x-axis. This x-value is then the next guess, xi+1, and the
process is repeated.

Algebraically, Newton-Raphson derives from the Taylor series, with which you should
already be familiar from the IA Mathematics course. This states how the value of the
function at a new (nearby) point x + h can be calculated from the value and derivatives
at a known point x (Maths databook page 3):

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + . . .

To find a root of our function, let us say that our current guess is at x and we want to
find out how much to move to get to the root. Calling this correction term h, this means
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that the root is at x + h and so, by definition, f(x + h) = 0. Using the Taylor series
expansion:

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + . . . = 0

If h is small and the function is well-behaved then we can neglect the higher-order terms
and just use a linear approximation, needing only the first derivative:

f(x) + hf ′(x) ≈ 0

and so the correction term h can be estimated by

h ≈ − f(x)

f ′(x)

The update rule for Newton-Raphson just applies this correction at each iteration, i.e.

xi+1 = xi −
f(xi)

f ′(xi)
(1)

Given an initial guess, x0, we iterate according to equation (1) until the desired accuracy
is reached. Being a numerical solution, and given the limits to floating-point accuracy,
it may not be possible to exactly reach the root. Instead, it is usual to continue until
the difference between successive estimates is below a certain tolerance (i.e. we are close
enough for our purposes).

The Newton-Raphson method is very powerful, and it is the method of choice for
any function whose derivative can be evaluated efficiently, and is continuous and non-
zero in the neighbourhood of the root. It is also not restricted to just one-dimensional
problems, and readily generalises to multiple dimensions. Its main power lies in its rate
of convergence: near the root it converges quadratically, meaning that the number of
significant digits approximately doubles with each step. However, it is important to start
near the neighbourhood of the root and to be sure the function is well-behaved there, so
plotting the graph of the function whose root you are finding is a very useful first step.

B. Exercise

We shall use the Newton-Raphson method to find the roots of

f(x) = x5 − 5x4 + x2 − 8x+ 50 (2)

to a tolerance of 0.00001.

1. Write two functions: fun(x), which returns the value of f(x) (equation (2)) for a
given value of x; and dfun(x), which returns the value of its derivative, f ′(x). Plot
both of these over the range −3 to 6. Check that they appear correct, and make
initial guesses to the values of the roots (to the nearest whole number will do).

(Continued over the page)
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2. Write a third function, newton(x, tol) which performs the Newton-Raphson es-
timation of a root. This should make use of fun and dfun, iterate according to
equation (1) and return the final estimate. The first parameter, x, is the initial
guess x0. The second parameter, tol is the tolerance; the iteration stops once the
difference between successive estimates is less than this.

3. Find all of the real roots of equation (2) to the specified tolerance. Which root do
you find with an initial guess of 0, and why is this not one of the nearby roots? Are
there any cases where the Newton-Raphson method will fail to find a root?

C. Implementation notes

i. Writing functions

Don’t forget that each of your three functions needs to be in a separate M-file, each
with the same name as the function except for the .m added. Each file should begin
with a function line, and then some help comments.

ii. Loops

Think carefully about what kind of loop you need in newton.m to perform the iter-
ation, and what the termination criterion is.

iii. Absolute errors

Remember, when you check whether the remaining error is less than tol, that the
error value could be negative. Use the abs function to take the absolute value of
this error.

Exercise 3*: Passing functions (optional extension)

The newton function written for Exercise 3 is not as general as it could be, since it
assumes that the functions called fun and dfun exist, and do what they are supposed
to do. This can be improved by passing the names of the functions to newton as two
additional parameters. These function names are passed as strings, and you can tell
Octave to run a function named by a string using the feval command: feval(fname,

parameters, ... ) where fname is the function name string, and parameters, ... are
the parameters to pass to it. Try modifying your newton function to use feval rather
than referring to fun and dfun.
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9 Matrices and vectors

Vectors are special cases of matrices. A matrix is a rectangular array of numbers, the size
of which is usually described as m× n, meaning that it has m rows and n columns. For
example, here is a 2× 3 matrix:

A =

[

5 7 9
−1 3 −2

]

To enter this matrix into Octave you use the same syntax as for vectors, typing it in row
by row:

octave:##> A=[5 7 9

-1 3 -2]

A =

5 7 9

-1 3 -2

alternatively, you can use semicolons to mark the end of rows, as in this example:

octave:##> B=[2 0; 0 -1; 1 0]

B =

2 0

0 -1

1 0

You can also use the colon notation, as before:

octave:##> C = [1:3; 8:-2:4]

C =

1 2 3

8 6 4

A final alternative is to build up the matrix row-by-row (this is particularly good for
building up tables of results in a for loop):

octave:##> D=[1 2 3];

octave:##> D=[D; 4 5 6];

octave:##> D=[D; 7 8 9]

D =

1 2 3

4 5 6

7 8 9

9.1 Matrix multiplication

With vectors and matrices, the * symbol represents matrix multiplication, as in these
examples (using the matrices defined above)
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octave:##> A*B

ans =

19 -7

-4 -3

octave:##> B*C

ans =

2 4 6

-8 -6 -4

1 2 3

octave:##> A*C

error: operator *: nonconformant arguments (op1 is 2x3, op2 is 2x3)

error: evaluating binary operator ‘*’ near line 11, column 2

You might like to work out these examples by hand to remind yourself what is going on.
Note that you cannot do A*C, because the two matrices are incompatible shapes.24

When just dealing with vectors, there is little need to distinguish between row and
column vectors. When multiplying vectors, however, it will only work one way round. A
row vector is a 1× n matrix, but this can’t post-multiply a m× n matrix:

octave:##> x=[1 0 3]

x =

1 0 3

octave:##> A*x

error: operator *: nonconformant arguments (op1 is 2x3, op2 is 1x3)

error: evaluating binary operator ‘*’ near line 12, column 2

9.2 The transpose operator

Transposing a vector changes it from a row to a column vector and vice versa. The trans-
pose of a matrix interchanges the rows with the columns. Mathematically, the transpose
of A is represented as AT . In Octave an apostrophe performs this operation:

octave:##> A

A =

5 7 9

-1 3 -2

octave:##> A’

24In general, in matrix multiplication, the matrix sizes are

(l ×m)*(m× n)→ (l × n)

When we try to do A*C, we are attempting to do (2× 3)*(2× 3), which does not agree with the definition
above. The middle pair of numbers are not the same, which explains the wording of the error message.
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ans =

5 -1

7 3

9 -2

octave:##> A*x’

ans =

32

-7

In this last example the x’ command changes our row vector into a column vector, so it
can now be pre-multiplied by the matrix A.

9.3 Matrix creation functions

Octave provides some functions to help you build special matrices. We have already met
ones and zeros, which create matrices of a given size filled with 1 or 0.

A very important matrix is the identity matrix. This is the matrix that, when multi-
plying any other matrix or vector, does not change anything. This is usually called I in
formulæ, so the Octave function is called eye. This only takes one parameter, since an
identity matrix must be square:

octave:##> I = eye(4)

I =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

we can check that this leaves any vector or matrix unchanged:

octave:##> I * [5; 8; 2; 0]

ans =

5

8

2

0

The identity matrix is a special case of a diagonal matrix, which is zero apart from the
diagonal entries:

D =





−1 0 0
0 7 0
0 0 2





You could construct this explicitly, but the Octave provides the diag function which
takes a vector and puts it along the diagonal of a matrix:

octave:##> diag([-1 7 2])

ans =

-1 0 0

0 7 0

0 0 2
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The diag function is quite sophisticated, since if the function is called for a matrix, rather
than a vector, it tells you the diagonal elements of that matrix. For the matrix A defined
earlier:

octave:##> diag(A)

ans =

5

3

Notice that the matrix does not have to be square for the diagonal elements to be defined,
and for non-square matrices it still begins at the top left corner, stopping when it runs
out of rows or columns.

Finally, it is sometimes useful to create an empty matrix, perhaps for adding elements
to later. You can do this by defining the matrix with an empty pair of braces:

octave:##> E = []

E =

[]

9.4 Building composite matrices

It is often useful to be able to build matrices from smaller components, and this can easily
be done using the basic matrix creation syntax:

octave:##> comp = [eye(3) B;

A zeros(2,2)]

comp =

1 0 0 2 0

0 1 0 0 -1

0 0 1 1 0

5 7 9 0 0

-1 3 -2 0 0

You just have to be careful that each sub-matrix is the right size and shape, so that the
final composite matrix is rectangular. Of course, Octave will tell you if any of them have
the wrong number of row or columns.

9.5 Matrices as tables

Matrices can also be used to simply tabulate data, and can provide a more natural way
of storing data:

octave:##> t=0:0.2:1;

octave:##> freq=[sin(t)’ sin(2*t)’, sin(3*t)’]

freq =

0 0 0

0.1987 0.3894 0.5646

0.3894 0.7174 0.9320

0.5646 0.9320 0.9738

0.7174 0.9996 0.6755

0.8415 0.9093 0.1411

45



Here the nth column of the matrix contains the (sampled) data for sin(nt). The alternative
would be to store each series in its own vector, each with a different name. You would
then need to know what the name of each vector was if you wanted to go on and use the
data. Storing it in a matrix makes the data easier to access.

9.6 Extracting bits of matrices

Numbers may be extracted from a matrix using the same syntax as for vectors, using
the () brackets. For a matrix, you specify the row co-ordinate first and then the column
co-ordinate (note that, in Cartesian terms, this is y and then x). Here are some examples:

octave:##> J = [

1 2 3 4

5 6 7 8

11 13 18 10];

octave:##> J(1,1)

ans =

1

octave:##> J(2,3)

ans =

7

octave:##> J(1:2, 4) %Rows 1-2, column 4

ans =

4

8

octave:##> J(3,:) %Row 3, all columns

ans =

11 13 18 10

The : operator can be used to specify a range of elements, or if used just by itself then it
refers to the entire row or column.

These forms of expressions can also be used on the left-hand side of an expression to
write elements into a matrix:

octave:##> J(3, 2:3) = [-1 0]

J =

1 2 3 4

5 6 7 8

11 -1 0 10

10 Basic matrix functions

Octave allows all of the usual arithmetic to be performed on matrices. Matrix multipli-
cation has already been discussed, and the other common operation is to add or subtract
two matrices of the same size and shape. This can easily be performed using the + and
- operators. As with vectors, Octave also defines the .* and ./ operators, which allow
the corresponding elements of two matching matrices to be multiplied or divided. All the
elements of a matrix may be raised to the same power using the .^ operator.
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eye Create an identity matrix
zeros Create a matrix of zeros
ones Create a matrix of ones
rand Create a matrix filled with random numbers
diag Create a diagonal matrix, or extract the diagonal of the given matrix

inv Inverse of a matrix
det Determinant of a matrix
trace Trace of a matrix

eig Calculate the eigenvectors and eigenvalues of a matrix
rank Calculate an estimate of the rank of a matrix
null Calculate a basis for the null space of a matrix
rref Perform Gaussian elimination on an augmented matrix
lu Calculate the LU decomposition of a matrix
qr Calculate the QR decomposition of a matrix
svd Calculate the SVD of a matrix
pinv Calculate the pseudoinverse of a matrix

Table 6: Basic matrix functions and decompositions

Unsurprisingly, Octave also provides a large number of functions for dealing with
matrices, and some of these will be covered later in this tutorial. Try typing

help -i

and then search the various options. NB the table loaded is searchable by putting the
sursor over a topic and pressing <RETURN>, press Q to exit the help. See also Table 6.
For the moment we’ll consider some of the fundamental matrix functions. 25

The size function will tell you the dimensions of a matrix. This is a function which
returns a vector, specifying the number of rows, and then columns:

octave:##> size(J)

ans =

3 4

The inverse of a matrix is the matrix which, when multiplied by the original matrix,
gives the identity (AA−1 = A−1A = I). It ‘undoes’ the effect of the original matrix. It is
only defined for square matrices, and in Octave can be found using the inv function:

octave:##> A = [

3 0 4

0 1 -1

2 1 -3];

octave:##> inv(A)

ans =

0.1429 -0.2857 0.2857

0.1429 1.2143 -0.2143

0.1429 0.2143 -0.2143

25MATLAB has a slightly different index system, to access just type help at the >> prompt
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octave:##> A*inv(A) %Check the answer

ans =

1.0000 0.0000 -0.0000

0 1.0000 0

0 0.0000 1.0000

Again, note the few numerical errors which have crept in, which stops Octave from
recognising some of the elements as exactly one or zero.

The determinant of a matrix is a very useful quantity to calculate. In particular, a zero
determinant implies that a matrix does not have an inverse. The det function calculates
the determinant:

octave:##> det(A)

ans =

-14

Summary

After reading through sections 9 and 10 of the tutorial guide and working through the
examples you should be able to:

� Define matrices in Octave

� Use matrices and vectors in simple calculations

� Perform standard operations on matrices
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Exercise 4: Euler angles

A. Theory

A rotation matrix in two dimensions is easy to define. There is only one axis of rotation,
which is normal to the 2D plane, and a rotation of a positive angle θ (in a right-handed
co-ordinate system) is given by the matrix

[

cos θ − sin θ
sin θ cos θ

]

Defining rotations in three dimensions is more difficult. One method of defining rota-
tions is known as Euler angles, which are often used in mechanics.26

The method of Euler angles, specifies three angles. These are commonly called azimuth,
elevation and roll (or in aeronautical terms yaw, pitch and roll). We shall label these three
angles as ψ, θ and φ, and our object exists in a normal right-handed co-ordinate set, x, y
and z.

The rotations must be applied in a specific order. A point (x, y, z) is first rotated from
its original location by an angle ψ about the x axis (roll):





x′

y′

z′



 =





1 0 0
0 cosψ − sinψ
0 sinψ cosψ









x
y
z





Then it is rotated by an angle θ about the original y axis (elevation):





x′′

y′′

z′′



 =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









x′

y′

z′





The final rotation, φ is then about the original z axis (azimuth), defining the new location
x′′′, y′′′ and z′′′ as





x′′′

y′′′

z′′′



 =





cosφ − sinφ 0
sinφ cosφ 0

0 0 1









x′′

y′′

z′′





B. Computing exercise

1. Write a Octave function which takes as parameters three Euler angles and returns
a single 3D rotation matrix, transforming points (x, y, z) to (x′′′, y′′′, z′′′), as defined
above.

2. Now write a separate script, in which you call the function written in part 1 in order
to find the rotation matrix R which rotates a co-ordinate system by the Euler angles
(90◦, 20◦, 15◦). After calling this function, your script should verify that the matrix
returned is a valid rotation matrix i.e. that it is orthogonal, and has a determinant
of +1.

26Named after Leonhard Euler (1707–1783) who was responsible for much of the early work on differential
equations.
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3. The point p = (2, 3, 0)T is to be mapped to a new location q using the matrix R

from part 2. Add commands to your script to define p and find q. Which matrix
reverses this transformation?

4. Extend your script to also find the matrix S which represents the rotation given by
(−90◦,−20◦,−15◦). Transform the vector q, found in part 3, using the matrix S to
give a new vector r. Why does r 6= p?

C. Implementation notes

i. Degrees and radians

Remember that Octave works in radians, not degrees. You might like to make use
of the sind function you defined earlier, and also to define a cosd function.

50



11 Solving Ax = b

One of the most important use of matrices is for representing and solving simultaneous
equations. A system of linear equations is

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... =

...

am1x1 + am2x2 + · · ·+ amnxn = bm

where the aij and bi are known, and we are looking for a set of values xi that simultaneously
satisfy all the equations. This can be written in matrix-vector form as











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn





















x1

x2

...
xn











=











b1
b2
...
bm











or

Ax = b

In this representation, A is the matrix of coefficients, b are the constants, and x is the
vector of parameters that we want to find.

Since Octave is designed to process matrices and vectors, it is particularly appropriate
to use it to solve these forms of problems.

11.1 Solution when A is invertible

The simplest set of linear equations to solve occur when you have both n equations and n
unknowns. In this case the matrix A will be square and can often be inverted. Consider
this simple example:

x+ y = 3

2x− 3y = 5

Solving this in Octave is a case of turning the equations into matrix-vector form and
then using the inverse of A to find the solution:

octave:##>A=[1 1

> 2 -3];

octave:##> b=[3 5]’;

octave:##> inv(A)*b

ans =

2.8000

0.2000

octave:##>> A*ans %Just to check

ans =

3.0000

5.0000

So the solution is x = 2.8, y = 0.2.
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11.2 Gaussian elimination and LU factorisation

Calculating the inverse of a matrix is an inefficient method of solving these problems, even
if Octave can still invert large matrices a lot more quickly than you could do by hand.
From the IB Linear Algebra course, you should be familiar with Gaussian elimination, and
LU factorisation (which is just Gaussian elimination in matrix form).27 These provide a
more efficient way of solving Ax = b, and Octave makes it very easy to use Gaussian
elimination by defining this as the meaning of matrix division for invertible matrices.

11.3 Matrix division and the slash operator

In a normal algebraic equation, ax = b, if you want to find the value of x you would just
calculate x = b

a
. In a matrix-vector equation Ax = b, however, division is not defined

and the solution is given by x = A−1b. As a shortcut for this, Octave defines a special
operator \ (note that this is a backslash, not the divide symbol), and can be thought of
as ‘matrix division’. Using this, the solution to our earlier equation may be calculated as:

octave:##>A\b ans =

2.8000 0.2000

Note that this is not a standard notation and in written mathematical expressions you
should still always write A−1b.

You should recall that matrix multiplication is not commutative i.e. AB 6= BA. This
means that, while the solution to AX = B is given by X = A−1B, the solution to XA = B is
X = BA−1, and these two expressions are different. As a result, Octave also defines the /

(forward slash) operator which performs this other variety of matrix division. The former
case, however, is more likely, and it is usually the backslash that you will need to use. The
two slash operators are summarised in Table 7.

operator to solve Octave mathematical name
command equivalent

\ AX = B A\B A−1B left division (backslash)
/ XA = B B/A BA−1 right division (forward slash)

Table 7: Summary of Octave’s slash operators. These use Gaussian elimination if the matrix is invertible,
and finds the least squares solution otherwise.

11.4 Singular matrices and rank

The slash operator tries to do its best whatever matrix and vector it is given, even if a
solution is not possible, or is undetermined. Consider this example:

u+ v + w = 2

2u+ 3w = 5

3u+ v + 4w = 6

27The rref function will perform Gaussian elimination if you give it an augmented matrix [A b], or
the lu function in Octave will perform the LU factorisation of a matrix (see the help system for more
information).
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This is again an equation of the form Ax = b. If you try to solve this in Octave using
the slash operator, you get

octave:##>A=[1 1 1

> 2 0 3

> 3 1 4];

octave:##>b=[ 2 5 6]’;

octave:##>x=a\b;
warning: matrix singular to machine precision, rcond = 1.15648e-17

warning: attempting to find minimum norm solution

x =

0.69048

-0.11905

1.09524

octave:##>a*x ans =

1.6667

4.6667

6.3333

So the solution given is not a solution to the equation! Y In this case the matrix A is
singular as OCTAVE had warned. This means that it has a zero determinant, and so
is non-invertible. (Even if there had not been a warning you should perhaps have been
suspicious, anyway, from the size of the numbers in x. This is also seen when checking the
determinant which gives a near-zero number, e.g.

octave:##>det(A)
ans = 5.5511e-16

When the matrix is singular it means that there is not a unique solution to the equations.
But we have three equations and three unknowns, so why is there not a unique solution?
The problem is that there are not three unique equations. The rank function in Octave

estimates the rank of a matrix—the number linearly of independent rows or columns in
the matrix:

octave:##> rank(A)

ans =

2

So there are only two independent equations in this case. Looking at the original equations
more carefully, we can see that the first two add to give 3u + v + 4w = 7, which is
clearly inconsistent with the third equation. In other words, there is no solution to this
equation. What has happened in this case is that, thanks to rounding errors in the
Gaussian elimination, Octave has found an incorrect solution.
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The moral of this section is that the slash operator in Octave is very powerful and
useful, but you should not use it indiscriminately. You should check your matrices to
ensure that they are not singular, or near-singular.28

11.5 Ill-conditioning

Matrices which are near-singular are an example of ill-conditioned matrices. A problem is
ill-conditioned if small changes in the data produce large changes in the results. Consider
this system:

[

1 1
1 1.01

](

1
1

)

=

(

2
2.01

)

for which Octave displays the correct answer:

octave:##>M=[1 1; 1 1.01]; b=[2; 2.01];

octave:##>x=M\b
x =

1.00000

1.00000

Let us now change one of the elements of M by a small amount, and see what happens:

octave:##>M(1,2)=1.005;
octave:##>x=M\b
x =

-0.0100000

2.0000000

Changing this one element by 0.5% has decreased X(1) by approximately 101%, and
increased X(2) by 100%! The sensitivity of a matrix is estimated using the condition

number, the precise definition of which is beyond the scope of this tutorial. However, the
larger the condition number, the more sensitive the solution is to numerical errors. In
Octave, the condition number can be found by the cond function:

octave:##> cond(M)

ans = 402.01

A rule of thumb is that if you write the condition number in exponential notation a×10k,
then you last k significant figures of the result should be ignored. Octave works to about
fifteen significant figures, so the number of significant figures that you should believe is
(15− k). In this example, the condition number is 4× 102, so all of the the last 2 decimal
places of the solution should be dropped i.e. the result is perfectly valid.29 For the singular

28Some singular matrices can have an infinity of solutions, rather than no solution. In this case, the
slash operator gives just one of the possible values. This again is something that you need to be aware of,
and watch out for.

29This assumes that the values entered into the original matrix M and vector b were accurate to fifteen
significant figures. If those values were known to a lesser accuracy, then you lose k significant figures from
that accuracy.
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matrix A from earlier, which gave the spurious result, cond gives a condition number of
2.176 × 1016. In other words, all of the result should be ignored!30

11.6 Over-determined systems: Least squares

A common experimental scenario is when you wish to fit a model to a large number of
data points. Each data point can be expressed in terms of the model’s equation, giving a
set of simultaneous equations which are over-determined i.e. the number of independent
equations, m, is larger than the number of variables, n. In these cases it is not possible
to find an exact solution, but the desired solution is the ‘best fit’. This is usually defined
as the model parameters which minimise the squared error to each data point.

For a set of equations which can be written as Ax = b, the least-squares solution is
given by the pseudoinverse (see your IB Linear Algebra notes):

x =
(

ATA
)−1

ATb

In Octave you can again use the \ operator. For invertible matrices it is defined to
solve the equation using Gaussian elimination, but for over-determined systems it finds
the least squares solution. The pseudoinverse can also be calculated in Octave using the
pinv function, as demonstrated in the following example.

11.7 Example: Triangulation

A hand-held radio transmitter is detected from three different base stations, each of which
provide a reading of the direction to the transmitter. The vector from each base station is
plotted on a map, and they should all meet at the location of the transmitter. The three
lines on the map can be described by the equations

2x− y = 2

x+ y = 5

6x− y = −5

and these are plotted in Figure 8. However, because of various errors, there is not one
common point at which they meet.

The least squares solution to the intersection point can be calculated in Octave in a
number of different ways once we have defined our matrix equation:

octave:##>A=[2 -1; 1 1; 6 -1];

octave:##>b = [2 5 -5]’;

octave:##>x = inv(A’*A)*A’*b

x =

-0.094595

2.445946

octave:##>x=pinv(A)*b
x =

30The condition number for this singular matrix again shows one of the problems of numerical compu-
tations. All singular matrices should have a condition number of infinity.
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Figure 8: Three lines and the least squares estimate of the common intersection point

-0.094595

2.445946

octave:##>x = A\b
x =

-0.094595

2.445946

All of these, of course, give the same solution. This least squares solution is marked on
Figure 8 with a ‘*’.

12 More graphs

Octave provides more sophisticated graphing capabilities than simply plotting 2D Carte-
sian graphs, again by using GNUPlot. It can also produce histograms, 3D surfaces, con-
tour plots and polar plots, to name a few. Details of all of these can be found in the help

system, additional information can be found in the GNUPlot manual.

12.1 Putting several graphs in one window

If you have several graphs sharing a similar theme, you can plot them on separate graphs
within the same graphics window. The subplot command splits the graphics window into
an array of smaller windows. The general format is

subplot(rows,columns,select)

The select argument specifies the current graph in the array. These are numbered from
the top left, working along the rows first. The example below creates two graphs, one on
top of the other, as shown in Figure 9.

octave:##> x = linspace(-10, 10);

octave:##> subplot(2,1,1) % Specify two rows, one column, and select
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Figure 9: Example of the subplot command, showing a sine and sinc curve one above the other.

octave:##> % the top one as the current graph

octave:##> plot(x, sin(x));

octave:##> subplot(2,1,2);

octave:##> plot(x, sin(x)./x);

The standard axes labelling and title commands can also be used in each subplot.

12.2 3D plots

Octave provides a wide range of methods for visualising 3D data. The simplest form of
3D graph is plot3, which is the 3D equivalent of the plot command. Used for plotting
points or drawing lines, this simply takes a list of x, y and z values. The following example
plots a helix, using a parametric representation.31

octave:##> t = 0:pi/50:10*pi;

octave:##> x = sin(t); y = cos(t); z = t;

octave:##> plot3(x, y, z);

The graph is shown in Figure 10. The xlabel and ylabel commands work as before, and
now the zlabel command can also be used. When plotting lines or points in 3D you can
use all of the styles listed in Table 3.

12.3 Changing the viewpoint

If you want to rotate the 3D plot to view it from another angle, the easiest method is to
use interact using the mouse. (N.B. Clicking and dragging with the mouse on the plot will
now rotate and zoom the graph etc. It helps if the graph has been labelled first) Details
of the most used commands are given in Table 832

The Octave command view can also be used to select/set a particular viewpoint, (use
help view to obtain more information).

31A line is only a one dimensional shape—you can define a point along its length, but it has no width or
height. Lines can therefore be described in terms of only one parameter: the distance along the line. The
x, y (and in 3D z) co-ordinates of points on the line can all be written as functions of this distance along
the line: ‘if I am this far along the line, I must be at this point.’

32Matlab has an enhanced graphical interaction using a GUI
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Figure 10: Example of the plot3 command, showing a helix.

Mouse Actions

LMB + motion Rotate View
<Ctrl> + LMB + motion Rotate axes (View update when button released)

MMB + motion Scale View.
<Ctrl> + MMB + motion Scale axes (View update when button released)
<Shift> + MMB + motion vertical motion – change ticslevel

Key Bindings Actions

→ Rotate right (<shift> increases amount)
↑ Rotate up (<shift> increases amount)
← Rotate left (< shift> increases amount)
↓ Rotate down (<shift> increases amount)

Table 8: Mouse and Keybinds for interaction with 3D graphs, (LMB - Left Mouse Button, MMB - Middle
Mouse Button), see also table 4.

12.4 Plotting surfaces

Another common 3D graphing requirement is to plot a surface, defined as a function of two
variables f(x, y), and these can be plotted in a number of different ways in Octave. First,
though, in order to plot these functions we need a grid of points at which the function is
to be evaluated. Such a grid can be created using the meshgrid function:

octave:##> x = 2:0.2:4; % Define the x- and y- coordinates

octave:##> y = 1:0.2:3; % of the grid lines

octave:##> [X,Y] = meshgrid(x, y); %Make the grid

The matrices X and Y then contain the x and y coordinates of the sample points. The
function can then be evaluated at each of these points. For example, to plot

f(x, y) = (x− 3)2 − (y − 2)2

over the grid calculated earlier, you would type
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Figure 11: Examples of the same saddle-shaped surface visualised using different Octave commands. (The
4 graphs are plotted in the same figure using the command subplot(2,2,i ).)

octave:##> Z=(X-3).^2 - (Y-2).^2;

octave:##> surf(X,Y,Z)

surf is only one of the possible ways of visualising a surface. Figure 11 shows, in the
top left, this surface plotted using the surf command, and also the results of some of the
other possible 3D plotting commands.

12.5 Images and Movies

An image is simply a matrix of numbers, where each number represents the colour or
intensity of that pixel in the image. It should be no surprise, therefore, that Octave can
also perform image processing. There are several example images supplied with Octave

on the MDP CD and MDP website33, and the following commands load and display one
of them:

octave:##>load cued

octave:##>colormap(gray(64)) % Tell Octave to expect a greyscale image

octave:##>image(a)

The file cued.mat contains the matrix a. If you look at the elements of this matrix, you
will see that it simply contains numbers between 0 and 63, which represent the brightness
of each pixel (0 is black and 63 is white). The image command displays this matrix as an
image; the colormap command tells Octave to interpret each number as a shade of grey,
and what the range of the numbers is.34 N.B. Octave uses Imagemagick, by default, as
the display program giving the user full acces to file format conversion and printing.

33http://www-mdp.eng.cam.ac.uk
34Try colormap(jet) for an example of an alternative interpretation of the numbers (this is the default

colormap). The colormap is also used to determine the colours for the height in the 3D plotting commands.
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Octave can also create and display movies, but unlike MATLAB this is awkward. It
is hoped to enhance the functionality in this area shortly.

Summary

After reading through Sections 11 and 12 of the tutorial guide and working through the
examples you should be able to:

� Write linear simultaneous equations in matrix-vector form

� Use the slash operator in Octave to solve Ax = b

� Understand what the slash operator does in different scenarios

� Appreciate the problems of ill-conditioned matrices

� Produce more advanced figures, including displaying three-dimensional data

Exercise 5: Leg Before Wicket?

A. Description

In high speed ball games, e.g. Tennis, Football and Cricket, the precise trajectory of a
ball can lead to contentious decisions. The Leg Before Wicket (LBW) rule in cricket is the
cause of much contention, but the problem is a very simple one: if the batsman had not
got in the way, would the ball have hit the stumps? This is an extrapolation problem. We
can track the ball’s position from the point it bounces, until it hits the batsman, and the
problem is then just one of fitting a curve to the observed trajectory and extrapolating
this to see if it hits the stumps.

A tracking system estimates the ball’s position at a rate of 150Hz, and for each sample
stores the x, y and z co-ordinate of the ball. Measurements are in metres, according to
the axes defined in Figure 12, centred on the bottom of the middle stump. A cricket ball
is approximately 72mm in diameter.

Figure 12: Definition of axes, and dimensions of the stumps

(Continued over the page)
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B. Exercise

Write a program which will read a file giving ball position data, fit an extrapolated trajec-
tory to the data, and determine whether the ball would have hit the stumps or not. There
are three data files to be analysed: cricket.txt, cricket2.txt and cricket3.txt. Each
file contains 4 columns of data, in the format (time x y z ), giving the ball positions
from the point they pitched until the point the ball hit the batsman.

1. Write a script to load the cricket.txt file into Octave and produce a three di-
mensional plot of the position data, marking each sample with a blob.

2. Assuming a linear horizontal trajectory (i.e. that the ball’s velocity is constant in
x and y), and that its height describes a parabola, express each of the three co-
ordinates as a function of time. You should assume that g = −9.81ms−2. Extend
your script to use least squares to estimate the motion parameters and so fit a curve
to the sample points. The script should add your estimated curve to the 3D plot,
extrapolating it forward in time so that it can be seen passing the stumps.

3. Add lines to your script to calculate the exact (extrapolated) position of the ball
at the time it passes the stumps. Your script should then test this position to see
whether the ball would hit the stumps, and print out a message giving the final
decision as ‘out’ if it would have hit, or ‘not out’ otherwise. Use your script to
determine whether the batsman in the case of cricket.txt should be given out or
not.

4. You should ensure that your script is general enough to work with new sets of data.
Test your script with the other two data sets, cricket2.txt and cricket3.txt,
making any changes needed to your script, so that the only change necessary to try
each new data file is to change the name of the file to be loaded. Determine whether
the batsman should be given out in these other two cases.

C. Implementation notes

i. Loading text files

The load command can be used to load data from a text file. Its functional form,
N=load(’file.txt’), can be used to both load a file and assign its data to a par-
ticular variable name.

ii. Number of samples

The size command can be used to to determine the size of a matrix, and thus the
number of samples in the a data file once it has been loaded. See Section 8.3 for an
example of its use.

iii. Solving equations of motion by least squares

For each sample point you can write three equations in terms of time: one for x, one
for y, and one for z. The first two are linear, in the form

x = x0 + uxt
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And similarly for y. Each of these equations has two parameters, the speeds ux

and uy, and the initial positions x0 and y0. The z motion will have an additional
quadratic term involving g:

z = z0 + uzt+ 1

2
gt2

Despite having an extra term, this equation also has only two unknown parameters,
since both z and 1

2
gt2 are known.

The three equations may be written in matrix-vector form as

x equation →
y equation →
z equation →





.

.

.




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
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where the elements in A are given by a comparison of coefficients with the three
motion equations, and b gathers together the constants from the three equations.

Each sample point gives different values of x, y and z, and so three different equa-
tions. Each of these equations gives different values for the matrix A, but the param-
eters ux etc. stay exactly the same (these are our initial conditions, and define the
fitted trajectory). We can therefore stack all of our equations on top of each other
to create some huge matrices and vectors:
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This then an over-determined equation of the form A′x = b′, and can be solved in
Octave with the slash operator or the pseudoinverse.

iv. Building the matrix A′

Each data point from the text file contributes three equations, and so three lines to
both A′ and b′. The best way to build this matrix and vector is with a for loop
which steps through the rows of the raw data and, for each row, fills in three rows
of A′ and b′. Remember that you can accumulate matrices as in this example:

(Continued over the page)
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octave:##> A=[];

octave:##> A=[A; 1 2 3];

octave:##> A=[A; 4 5 6]

A =

1 2 3

4 5 6

(see also Section 9).

v. The position of the stumps

The dimensions of the stumps are given in Figure 12. In addition, the script
drawstumps.m will draw a 3D representation of the stumps in the current figure
window.

vi. Axis scaling

Your stumps and trajectory may look a little strange because of Octave’s automatic
scaling of the axes. Typing axis equal will ensure that the scale on all three axes
is the same.
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13 Eigenvectors and the Singular Value Decomposition

After the solution of Ax = b, the other important matrix equation is Ax = λx, the solutions
to which are the eigenvectors and eigenvalues of the matrix A. Equations of this form crop
up often in engineering applications, and Octave again provides the tools to solve them.

13.1 The eig function

The eig function in Octave calculates eigenvectors and eigenvalues. If used by itself, it
just provides a vector containing the eigenvalues, as in this example:

octave:##>A=[1 3 -2

> 3 5 1

> -2 1 4];

octave:##>eig(A)
ans =

-1.5120

4.9045

6.6076

In order to obtain the eigenvectors, you need to provide two variables for the answer:

octave:##>[V,D]=eig(A)
V =

-0.818394 -0.315302 -0.480434

0.434733 0.207055 -0.876433

-0.375818 0.926128 0.032380

D =

-1.51204 0.00000 0.00000

0.00000 4.90448 0.00000

0.00000 0.00000 6.60756

The columns of the matrix V are the eigenvectors, and the eigenvalues are this time re-
turned in a diagonal matrix. The eigenvectors and eigenvalues are returned in this format
because this is then consistent with the diagonal form of the matrix. You should recall
that, if U is the matrix of eigenvectors and Λ the diagonal matrix of eigenvalues, then
A = UΛU−1. We can easily check this using the matrices returned by eig:

octave:##> V*D*inv(V)

ans =

1.0000 3.0000 -2.0000

3.0000 5.0000 1.0000

-2.0000 1.0000 4.0000

which is the original matrix A.
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13.2 The Singular Value Decomposition

Eigenvectors and eigenvalues can only be found for a square matrix, and thus the decom-
position into UΛU−1 is only possible for these matrices. The Singular Value Decomposition
(SVD) is a very useful technique, which provides a similar decomposition for any matrix.
The specifics are covered in the IB Linear Algebra course, but an outline of the outcome
of the decomposition is given here.

The SVD takes an m× n matrix A and factors it into A = Q1ΣQ
T
2 , where

• Q1 is an m×m orthogonal matrix whose columns are the eigenvectors of AAT

• Q2 is an n× n orthogonal matrix whose columns are the eigenvectors of ATA

• Σ is an m×n diagonal matrix whose elements are the square roots of the eigenvalues
of AAT and ATA (both have the same eigenvalues, but different eigenvectors)

This is better shown graphically:
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The most important part of this decomposition to consider is the matrix Σ, the diagonal
matrix, whose elements are called the singular values, σi:
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Being part of a diagonal matrix, these only multiply particular columns of Q1 or Q2.
35 The

size of the singular value tells you exactly how much influence the corresponding rows and
columns of Q1 and QT

2 have over the original matrix. Clearly, if a singular value is tiny,
very little of the corresponding rows and columns get added into the matrix A when it is
reconstituted. It is quite common for a matrix to have some zero eigenvalues, as shown
above. These zero elements on the diagonal indicate correspond to rows or columns that
give no extra information. This indicates, of course, that not all of the matrix is useful—
that it is rank deficient. Or, in terms of simultaneous equations, that not all the equations
are independent.

The SVD is a very useful tool for analysing a matrix, and the solutions to many
problems can simply be read off from the decomposed matrices. For example, the nullspace

35The singular values Σ of course multiply the rows of QT

2 , and hence the columns of the un-transposed
version, Q2.
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of the matrix (the solution to Ax = 0) is simply the columns of Q2 which correspond to
the zero singular values. The SVD is also highly numerically stable—matrices which are
slightly ill-conditioned stand more chance of working with SVD than with anything else.

13.3 Approximating matrices: Changing rank

Another important use of the SVD is the insight it gives into how much of a matrix is
important, and how to simplify a matrix with minimal disruption. The singular values are
usually arranged in order of size, with the first, σ1, being the largest and most significant.
The corresponding columns of Q1 and Q2 are therefore also arranged in importance. What
this means is that, while we can find the exact value of A by multiplying Q1ΣQ

T
2 , if we

removed (for example) the last columns of Q1 and Q2, and the final singular value, we
would be removing the least important data. If we then multiplied these simpler matrices,
we would only get an approximation to A, but one which still contained all but the most
insignificant information. Exercise 6 will consider this in more detail.

13.4 The svd function

The SVD is performed in Octave using the svd function. As with the eig function, by
itself it only returns the singular values, but if given three matrices for the answer then it
will fill them in with the full decomposition:

octave:##> A=[1 3 -2 3

> 3 5 1 5

> -2 1 4 2];

octave:##> svd(A)

ans =

8.9310

5.0412

1.6801

octave:##> [U,S,V] = svd(A,0)

U =

-4.6734e-01 3.8640e-01 7.9516e-01

-8.6205e-01 3.3920e-04 -5.0682e-01

-1.9611e-01 -9.2233e-01 3.3294e-01

S =

8.93102 0.00000 0.00000

0.00000 5.04125 0.00000

0.00000 0.00000 1.68010

V =

-0.297983 0.442764 -0.828029
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-0.661559 0.047326 0.109729

-0.079700 -0.885056 -0.455551

-0.683516 -0.135631 0.307898

octave:##> U*S*V’ % Check Answers

ans =

1.00000 3.00000 -2.00000 3.00000

3.00000 5.00000 1.00000 5.00000

-2.00000 1.00000 4.00000 2.00000

Note that Octave automatically orders the singular values in decreasing order.

13.5 Economy SVD

If a m× n matrix A is overdetermined (i.e. m > n), then the matrix of singular values, Σ,
will have at least one row of zeros:

octave:##> [U,S,V]=svd(A)

U =

-0.22985 0.88346 0.40825

-0.52474 0.24078 -0.81650

-0.81964 -0.40190 0.40825

S =

9.52552 0.00000

0.00000 0.51430

0.00000 0.00000

V =

-0.61963 -0.78489

-0.78489 0.61963

If we then consider the multiplication A = U*S*V’, we can see that the last column of U

serves no useful purpose—it multiplies the zeros in S, and so might as well not be there.
Therefore this last column may be safely ignored, and the same is true of the last row of
S. What we are then left with is matrices of the following form:
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Octave can be asked to perform this ‘economy’ SVD by adding ‘,0’ to the function
argument (NB this is a zero, not the letter ‘O’):
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octave:##> [U,S,V]=svd(A,0)

U =

-0.22985 0.88346

-0.52474 0.24078

-0.81964 -0.40190

S =

9.52552 0.00000

0.00000 0.51430

V =

-0.61963 -0.78489

-0.78489 0.61963

This is highly recommended for matrices of this shape, since it takes far less memory and
time to process.

Summary

After reading through Sections 13 of the tutorial guide and working through the examples
you should be able to:

� Calculate eigenvectors and eigenvalues using Octave

� Have an understanding of what the Singular Value Decomposition (SVD) tells you
about a matrix

� Be able to perform the SVD in Octave
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14 Complex numbers

Apart from matrix and vector computations, Octave also supports many other math-
ematical and engineering concepts, and among these are complex numbers. Complex
numbers can be typed into Octave exactly as written, for example

octave:##> z1=4-3i

z1 = 4 - 3i

Alternatively, both i and j are initialised by Octave to be
√
−1 and so (if you’ve not

redefined them) you can also type

octave:##> z2 = 1 + 3*j

z2 = 1 + 3i

You can perform all the usual arithmetic operations on the complex numbers, exactly
as for real numbers:

octave:##> z2-z1

ans = -3 + 6i

octave:##> z1+z2

ans = 5

octave:##> z2/z1

ans = -0.20000 + 0.60000

octave:##> z1^2

ans = 7 - 24i

Octave also provides some functions to perform the other standard complex number
operations, such as the complex conjugate, or the modulus and phase of the number,
and these are shown in Table 9. Other functions which have mathematical definitions for
complex numbers, such as sin(x) or ex, also work with complex numbers:

octave:##> sin(z2)

ans = 8.4716 + 5.4127i

octave:##> exp(j*pi) %Should be 1

ans = -1.0000e+00 + 1.2246e-16i

octave:##> exp(j*2)

ans = -0.41615 + 0.90930i

octave:##> cos(2) + j*sin(2) %Should be the same as e^2i

ans = -0.41615 + 0.90930i

Matrices and vectors can, of course, also contain complex numbers.

14.1 Plotting complex numbers

The plot command in Octave also understands complex numbers, so you can use this
to produce an Argand diagram (where the x-axis represents the real component and the
y-axis the imaginary):

octave:##> plot(z1,’*’, z2,’*’)

octave:##> axis([-5 5 -5 5])

These commands produce the plot shown in Figure 14.1.
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function meaning definition (z = a+ bi)

imag Imaginary part a
real Real part b
abs Absolute value (modulus) r = |z|
conj Complex conjugate z = a− bi
angle Phase angle (argument) θ = tan−1

(

b
a

)

Table 9: Complex number functions
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Figure 13: Graphical representation of the complex numbers z1 = 4 − 3i and z2 = 1 + 3i using the plot

command.

14.2 Finding roots of polynomials

Octave provides a function, roots, which can be used to find the roots of polynomial
equations. The equation is entered into Octave, surprise, surprise, using a vector for the
array of coefficients. For example, the polynomial equation

x5 + 2x4 − 5x3 + x+ 3 = 0

would be represented as

octave:##> c = [1 2 -5 0 1 3];

The roots function is then called using this vector:

octave:##> roots(c)

ans =

-3.44726 + 0.00000i

1.17303 + 0.39021i

1.17303 - 0.39021i

-0.44940 + 0.60621i

-0.44940 - 0.60621i
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15 Appendix - Setup conditions

By default Octave distribution obtained from www.octave.org has some options set to
minimise problems. In the implementation included on the MDP cd the following options
have been set in the .octaverc file.

global gnuplot has pm3d=1

gset mouse

automatic replot=1

16 Further reading

This tutorial has introduced the basic elements of using Octave. The main document
for the use of Octave is the OCTAVE manual which is included in the MDP distribution
and can be obtained from http://www.octave.org. A print version is also available with
profits going to further development of the code.

In addition there is the on-line help and lists of available functions at
http://octave.sourceforge.net/index and included on the MDP resources.

In addtion searching for octave + tutorial on the web reveals a number of on-line
tutorials.

Also most of the MATLAB tutorials and textbooks are also relevant, including:

• Matlab 6 for engineers, A. Biran, M. Breiner, Pearson Education, 2002

• Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers,
R. Pratap, Oxford University Press, 2002
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